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Abststraet-A n~rn~r~cnl anafysis of non-finear convection in a Hele-Shaw cell heated from below is 
pcrform~. The stability of the stationary solutions with respect to ~nfinitesi~ai disturbances are 
examined. Further, the velocity distribution in the convection cell is discussed, and the theoretical results 

are found to fit well with available experimental data 
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Rayleigh number -~-.1__ ; 
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temperature ; 
t~~npera~u~~ difference between lower 
and upper boundary; 
(~1, L‘, 1~) velocity vector; 
Cartesian coordinates; 
full width of the HeIe-Shaw cell 
(wall + channel). 

Greek symbols 

a, wave number; 
^I i. coefficient of thermal expansion; 
0. temperature; 
x, thermal diffusivity; 

1’3 kinematic viscosity; 

P* density. 

Subscripts 

c, critical; 
m, solid-fluid mixture; 
0, reference values ; 
s, stationary values. 

1. INTRODUCTION 

DURING the recent years convection in a porous 
medium has received considerable interest, due both 

to its geophysical importance and to the mathemati- 
cal simplicity of the model. A number of theoretical 
and experimental papers have appeared in the 
literature. Schneider [ 1 J, Elder [2], Buretta [3] and 
Bories and Combarnous [4] have performed labo- 
ratory experiments. Finite amplitude convection in a 
porous medium has been analysed numerically by 
Elder [2], Straus [S] and Kvernvold [6], and 
~naiytically by Palm, Weber and Kvernvold [7]. 

The analogy between motion in a porous medium 
and motion in a HeIe-Shaw cell has frequently been 
used to simulate porous convection, especially with 
emphasis on the velocity distribution and the cell 
structure of the convective motion. See for example 
Wooding [S], Horne and O’Sullivan [9] and 
Hartline and Lister [lo]. 

By defining an appropriate permeability the 
analogy between the stationary two-dimensional 
motion in a porous medium and the motion in a 
Hele-Shaw cell is obvious. However, one must 

beware of using this similarity too far, because the 
stability properties for the two types of non-linear 
motion are quite different. In a porous medium 
disturbances of ‘three-dimensional character are the 
most critical ones 1]5,6] while for a Hele---Shaw cell 
only two-dimensional disturbances may exist. 

The main aim of the present paper is to study the 
difference between the stability regions for non-linear 
convection in a Hele-Shaw cell and non-linear 
convection in a porous medium. Further. the velocity 
distribution and the heat transport are also 
discussed. 

2. THE GOVERNING EQUATIONS 

We consider a HeleeShaw cell defined by two 
vertical planes of infinite horizontal extent, height h, 
and separated by a distance d, where d G h. The fluid 
confined in the cell is supposed to be bounded 
vertically by two perfect heat conducting and 
impermeable planes, having constant temperature r, 
and Ii -+-AX respectively, where the lower plane is 
the warmer. 

Following Hartline and Lister [IO], the governing 
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equations for motion in a Hele-Shaw cell may be 
written: 

The critical Rayleigh number, Ra,,,,, is obtained 
from the linearized version of (2.14) giving Ra,,, 

= 47-r’ for a critical wave number rC = n, where a is 
the overall horizontal wave number defined by Vf$ 
= -r”$ [Ill. 

?T Y 
c?;-+vVT = d~mV20 (2.3) 

(2.4) 

where the Boussinesq approximation has been 
utilized. 

By introducing dimensionless quantities 

for length, velocity, temperature,. pressure and time, 
respectively, the equations (2.1))(2.4) become 

v = -VP f Ra,,Hk (2.6) 

v.v=o (2.7) 

X 
j;t+vVO = w+V%, 

where the Hele-Shaw Rayleigh number is 

(2.8) 

Ra 
YgAThd” 

HS=----. 
ti,v12Y 

(2.9) 

Equations (2.6))(2.8) are formally identical to the 
equations describing convection in a porous medium 
if the permeability for the HeleeShaw cell is defined 
as 

(2.10) 

The boundary conditions imposed on the system 
are 

0=\v=O at :=O,l. (2.1 I) 

From equation (2.6) we observe that the vertical 
component of vorticity is zero. This, together with 
equation (2.7) makes it possible to introduce a scalar 
function, I/?, such that 

v = V x V x k$ = Sll/. (2.12) 

Further, by eliminating the pressure from equation 
(2.6) we find 

0 = -&v”*, (2.13) 
HS 

and by combining (2.6) (2.8) (2.12) and (2.13), we 
finally obtain 

-~V2,~+VJ~+R~I,SV;$ = 6$.VV2$ (2.14) 

with the boundary conditions 

rl/=t~;,=O at z=O,l. (2.15) 

3. METHOD OF SOLUTION 

To obtain a sufficiently exact solution of the 
problem for supercritical Rayleigh numbers the 
equations will be solved by numerical methods. 
Using Galerkin’s method we will find a stationary 
solution of (2.14) and examine the stability of this 
solution with respect to small disturbances. 

The stationary two-dimensional solution of (2.14) 
subject to the boundary condition (2.15) is obtained 
by expanding the function $ in an infinite series: 

(3.1) 
p=-r q-1 

where each term satisfies the boundary conditions. 
The symmetry of the problem implies the restriction 

‘4,, = A_,, (3.2) 

corresponding to convection cells without tilt. 
Substituting (3.1) into (2.14) multiplying by 

e-‘“““sinmn= and integrating over the whole fluid 
layer, we obtain an infinite set of algebraic equations 
for A,, (Kvernvold [6]) 

[(n’tx” + m2n2)2 - Ra,,n2cr’]A,, 

= -“; An_k,m+, A,,(k2a2+12n2) 

x (km + In)(n - k)r2n 

+f~~m.rA,-,,,,~,,,~,-,,A~~(kZ~2+~2~2) 

x (km- /rz)(n - k)Lw2n (3.3) 

where 

1 for rn>/ 

S,,, = 
: 

0 for m=/ 
- I for rn < I 

In order to handle this set it is necessary to 
truncate the series (3.1). We choose 
terms with 

m+ 1 
(nJ + -- > N 

2 
(3.4) 

to neglect all 

where N is a sufficiently large number. 
Because of the symmetry of equation (2.14) the 

solution will only contain amplitudes with n+m 
even, giving N(N + I )/2 equations to solve. For a 
given N the equations are solved by a 
Newton-Raphson iteration procedure. Usually less 
than 5 iterations are needed to obtain a satisfactorily 
convergent solution. To determine the value of the 
truncation parameter, N, we follow Busse [12] 
assuming the solution to be sufficiently accurate if, 
by replacing N by N + 1. the Nusselt number 

(3.5) 
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varies less than 1%. The over-bar denotes horizontal 
average. 

After obtaining a solution, I/J,* of the stationary set 
of equations (3.3), the stability of this solution with 
respect to infinitesimal disturbances is examined. By 
introducing $ = tj~,+$’ into equation (2.14) and 
linearize with respect to the infinitesimal disturbance, 
tj’, we obtain the following equation 

with boundary conditions 

$b’=l&=O at ,_=O,l. (3.7) 

If there exists a solution of (3.6) with growing time 
dependence, the stationary solution is said to be 
unstable. Otherwise it is stable. 

A general expression for the perturbation, I/, is 
given by 

$,’ = z A,, eir~xeM~~b’)+@t sinqnz (3.8) 

8.4 

where d and b are free parameters. For a Hele-Shaw 
cell the geometry forces the motion to be purely two- 
dimensional, and consequently we may put b = 0. 
This means that the perturbation is two-dimensional 
with axis parallel to the axis of the stationary 
solution. Instability arising from disturbances of this 
type, is termed Eckhaus instability. For ordinary 
porous convection it may be shown that distur- 
bances with d = 0 and b # 0 are the most dangerous 

[% Cl. 

4. RESULTS AND DISCUSSIONS 

The results of the numerical calcuiations are 
shown in Figs. 1-6. In Fig. I we have displayed the 
vertical heat transport defined by the Nussett 
number (3.5) as a function of the Rayleigh number. It 
is assumed that there is no heat flux through the 
vertical walls of the Hele-Shaw cell. This may be 
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FIG. 1. Nusselt number vs Rayleigh number: __ numeri- 
cal vafues; shaded area, experimentai values. 
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FIG. 2. Region of stable rolls: - .- marginal stability ; 
- exponential instability; ----- oscillatory instability. 

achieved either by insulating the vertical walls, or by 
putting several Hele-Shaw cells beside each other. A 
medium composed of several Hele-Shaw cells (even- 
tually with perforated, permeable walls) may also be 
treated as an anisotropic porous medium [13]. The 
shaded area in Fig. 1 indicates the region for 
experimental results obtained by [l]-[3]. 

In Fig. 2 we have shown the stability region for 
convection in a Hele-Shaw cell compared to the 
stabiiity region for convection in a porous medium. 
We observe that convection in a Hele-Shaw cell is 
stable for a much wider range of wave numbers and 
Rayleigh numbers than ordinary porous convection. 
The stability region for two-dimensional convection 
in porous medium closes for Ra - 8Ru,. For 
convection in a Hele-Shaw cell, however, the 
stability region did not show any tendency to close 
as far as calculations were performed. 

The difference in the stability regions for con- 
vection in a porous medium and convection in a 
Hele-Shaw cell is a result of the different geometrical 
con~gL]r~~tions of the two problems. While for 
convection in a porous Inedium disturbances with 
arbitrary orientation will exist, the geometry forces 
the disturbances to be purely two-dimensional with 
axis parallel to the axis of the stationary roll for 
convection in a Hele-Shaw cell. For porous con- 
vection the most unstable disturbances are of cross- 
roll character (II = 0) and have exponential time 
dependence. For a Hele-Shaw cell, however, only 
disturbances with d = 0 (Eckhaus-instability) exist, 
and the instability is of exponential character except 
for a < CY, and RaHs < 78Ra,,,,, where it is 
oscillatory. 
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The results given in Fig. 2 confirm the results 
obtained by Horne and O’Sullivan [9] by a finite 
two-dimensional method. They found, by consider- 
ing a unicellular motion near the critical point and 
then by increasing the Rayleigh number slowly, that 
the motion became unstable for Ra,, - ~Ru,,,. 
From Fig. 2 we observe that cells with critical 
wavelength become unstable at Ra,, - 7,5Ra,,,. 
Further [9] found that, by suddenly raising the 
temperature difference between the boundaries, mo- 
tion with shorter wavelength would occur and this 
motion was stable for Rayleigh numbers up to at 
least 1250. This is also seen from Fig. 2 where rolls 
with wavenumbers greater than 2c(, are shown to be 
stable for Rayleigh numbers up to 500. No calcu- 
lations have been performed for Rayleigh numbers 
above this value, but as mentioned before, there is 
nothing which indicates a closure of the stability 
region for even higher Rayleigh numbers. 

FIG. 4. The variation of non-dimensional vertical velocity 
with height for r = a,. 

We may therefore conclude from Fig. 2 that 
although the stationary motion in a Hele-Shaw cell 
and a porous medium are analogous, the stability 
domains are quite different. This must be taken into 
account when a Hele-Shaw cell is used to simulate 

porous convection. 

looking at Fig. 4, where we have plotted the vertical 
velocity distribution for different values of the 
Rayleigh numbers. Figure 4 shows that the vertical 
velocity is not symmetric about z = i, while [lo] did 
assume symmetry in their handling of the experimen- 
tal data. For experimental reasons they did not 
measure the vertical velocity component, w,, at z 
= 3, but at a distance away from this midline 
depending on the flow velocity. (Unfortunately, they 
do not give any values for this distance.) The raw 

velocity data, w,, are then adjusted to the midline 

velocity by assuming 
Recent experimental investigators on convection 

in a Hele-Shaw cell [9, lo] have mainly been 
concerned with the velocity distribution and the cell 
structure. In Fig. 3 we have displayed the calculated 
maximum value of the vertical velocity component 
for c( = CI,. For comparison we have also plotted 
experimental values obtained by Hartline and Lister 
[lo]. The figure shows satisfactory agreement be- 
tween the analysis and the experiments. The numeri- 
cal values lie in fact within the reported errorbounds 
for the measurements. The slightly trend, however, 
for the experimental values to lie somewhat below 

Wmnx I 
the numerical ones may perhaps be explained by 

w(z) = IV, sin 7rz. (4.1) 

The numerical results given in Fig. 4 shows that this 
last assumption is not a good approximation for 
Ran, greater than 2-2.5 times the critical Rayleigh 
number. For Ru,, < 25Ru,,,,, however, where the 
flow is approximately symmetric about I’ = $, Fig. 3 

FIG. 3. The maximum value of the non-dimensional 
vertical velocity for c( = (x, vs Rayleigh number: __ 
numerical values; A experimental values obtained by 

Hartline and Lister [lo]. 

Oo~~-~.-- 
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FIG. 5. The variation of the maximum value of the non- 
dimensional vertical velocity with wave number. 



On the stability of non-linear convection in a Hele-Shaw cell 399 

Anm I 

FIG. 6. The amplitudes, A,,, vs (Ra,, - Ra,,,)/Ra,,, for a = a,. 

shows that numerical and experimental results fit 
well together. 

It is also worth mentioning the difference in the 
boundary conditions for the numerical and experim- 
ental model. In the experimental model the velocity 
vanishes identically at z = O,l, while in the numerical 
model the velocity has its maximum value at the 
boundary. Although we would expect the boundary 
layer to be of the same order of magnitude as the 
thickness of the HeleeShaw cell, this will imply a 

horizontal volume flux which is from 5 to 10% lower 
in the experiments than in the numerical model. 
From continuity reasons, then, we would expect a 
smaller experimental value for the vertical velocity 
than those obtained by numerical methods. 

In addition the velocity will also vary with the 
wave number. This is shown in Fig. 5, where the 
maximum value of the vertical velocity component is 
given as a function of the wave number and for 
different values of the Rayleigh number. As seen from 
the figure, the maximum value of the vertical velocity 
always occurs for wave numbers greater than the 
critical one. The variation is, however, less than 10% 
for wave numbers in the central region of the 
stability domain. 

In Fig. 6 we have displayed some of the most 
important amplitudes, A,,,,,, for c[ = CL, as functions of 

ARa,,,sjyRuH,, = (Ra,,, - RaH,y,)/RuH,s, = ARa. The 
most striking features is the linear relation between 
the logarithms of the amplitudes and ARa. This 
means that 

A nm - (ARa)P. (4.2) 

In the paper by Palm et al. [7] it is found that for 
small ARa A,, - (ARa)0.5 and A,, - ARa. For 
larger overcritical Rayleigh numbers higher order of 
ARa must be taken into account. From Fig. 6 we 
observe that A,, - (ARa)‘.” for ARa > 0.3. For 
ARa < 0.3 numerical calculations show that p de- 
creases and approaches 0.5 when ARa -+ 0. Similarly, 
it is found that A,, - (ARa)‘.03 and A,, - (ARa)‘.5 
for all ARa greater than 0.1. (As far as two- 

dimensional motion is stable.) The other amplitudes 
shown in the figure can not be given by (4.2) only, 
but as a good approximation we may write 

A 31 - (ARa)‘,‘, A,, - (ARa)‘.25 

and A,, - (ARu)‘.~‘. 

From an experimental point of view it would be of 

interest to verify this numerical result by a spectral 
analysis of the velocity field and the temperature 
field. 
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SUR LA STABILITE DE LA CONVECTION NON LINEAIRE 
DANS UNE CELLULE D’HELE-SHAW 

Resume-On developpe une analyse numerique de la convection non lineaire dam une cellule 
d’Hele-Shaw chat&e par le bas. On examine la stabilitt des solutions stationnaires vis-a-vis des 
perturbations infinitisimales. Puis on discute la distribution des vitesses dans la cellule de convection et 

l’on trouve que les risultats thtoriques sont en bon accord avec les donnees experimentales connues. 

DIE STABILITAT NICHTLINEARER KONVEKTION IN EINER 
HELE-SHAW-ZELLE 

Zusammenfassung-Es wird eine numerische Untersuchung der nichtlinearen Konvektion in einer von 
unten geheizten Hele-Shaw-Zelle durchgeftihrt. Die Stabilitat der stationaren Ldsungen im Hinblick auf 
infinitesimale Storungen wird untersucht. Weiterhin wird die Geschwindigkeitsverteilung in der 
Konvektionszelle diskutiert und eine gute Ubereinstimmung der theoretischen Ergebnisse mit den 

verl’iigbaren experimentellen Daten festgestellt. 

06 YCTOI?~MBOCrM HEJIllHEtiHOZi KOHBEKLIMM B II4EfiKE XMJIA-IIIOY 

AIIHOT~UIIS- BbUIOJIHeHO ',HC,IeHHOe HCCJIenOBaHHe HeJIFiHeiiHOi? KOHBeKUUW B 5I'Id-iKe &JIa-UO)', 

Hal-~BaeMO~ CHHJY. &'iCCJIeaOBUIaCb yCTOk,HBOCTb CTaWiOHapHbIX ~LUeHHk II0 OTHOUICHHlO K 6ec- 
KOHWHO MaJlbIM BOJM)'LWHWlM. KpoMe TOTO, IlpOBWIeH aHWIW3 paCn~~WIeH&ifi CKOpOCT&i B KOH- 

BeKTHBHOti FIeiiKe II HakleHO. 9TO TeO~TH'IeCKHe Pe3yJlbTaTbI XOpOIUO COWIi3CyFOTCSi C HhiCH)UIHMHCR 

3KCnePHMeHTaJIbHbIMHLIaHHbIMH. 


